$ 19.99
Lifetime accessThe course starts on TODAYJanuary 18, 2025
Course will end on March 19, 2025
7 Weeks (8-10 hours per week)
Last update on November 20, 2024
Data Science with Python
Data Science with Python
ABOUT THIS COURSE
"Introduction to Data Science with Python" is a beginner-level course designed to introduce you to the fundamental concepts and techniques of data science using Python, one of the most in-demand progr
What you'll learn
Course content
Workshop 1: Introduction to Data Science and Python
Lesson 1: Introduction
1 lectures
Lesson 2: Setup Environment
1 lectures
Lesson 3: Python basics
1 lectures
Lesson 4: Variables I
1 lectures
Lesson 5: Variables II
1 lectures
Lesson 6: Variables III
1 lectures
Lesson 7: Basic Calculations
1 lectures
Lesson 8 Concatenations
1 lectures
Assignment I: Python Programming Fundamentals
1 lectures
Workshop 2: Python Basics for Data Science
Lesson 1: Python Basics for Data Science
1 lectures
Lesson 2: Numeric and Text Types
1 lectures
Lesson 3: Sequencial Types
1 lectures
Lesson 4: Lists
1 lectures
Lesson 5: Tuples
1 lectures
Lesson 6: DataFrame
1 lectures
Lesson 7: Accessing Dictionary Key, Values and Items
1 lectures
Lesson 8: Adding and Deleting columns
1 lectures
Assignment II: Data Types, Control Structures and Dictionary
1 lectures
WorkShop 3: Python Libraries for Data Science and Descriptive Statistics
Lesson 1 Introduction Python Libraries
1 lectures
Lesson 2 Basic Numpy Operations
1 lectures
Lesson 3 Basic Pandas Operations and Accessing columns and Rows
1 lectures
Lesson 4 Basic Operation on Columns
1 lectures
Lesson 5 Updating Data Values based on Conditions
1 lectures
Lesson 6 Filtering Data
1 lectures
Lesson 7 Basic Statistics and Data Analysis
1 lectures
Lesson 8 Mean, Median, Mode and Standard Deviation
1 lectures
Lesson 9 Data Distributions
1 lectures
Lesson 10 Basic Data Processing
1 lectures
Lesson 11 Basic Data Processing 2
1 lectures
Lesson 12 Some Visualization and Specifications
1 lectures
Assignments III: Numpy array manipulation, Pandas Data Handling, and Descriptive Statistics.
1 lectures
Workshop 4: Data Preprocessing and analysis with Python
Lesson 1 Basic Data Preprocessing
1 lectures
Lesson 2 Accessing the dataset based on conditions
1 lectures
Lesson 3 Using Function to fix Density_status
1 lectures
Lesson 4 Apply Function
1 lectures
Lesson 5 Data Visualizations
1 lectures
Lesson 6 Data Visualizations 2
1 lectures
Lesson 7 Working with Outliers
1 lectures
Lesson 8 Checking Outliers
1 lectures
Lesson 9 Detecting Lower Outliers
1 lectures
Lesson 10 Detecting and Removing Upper Outliers
1 lectures
Assignments IV: Import Data, Handling Missing values and Duplicate Data Management
1 lectures
Workshop 5: Data Manipulation, Data Exploration and Data Visualization
Lesson 1 Loading CSV Dataset
1 lectures
Lesson 2 Some basic calculations about dataset
1 lectures
Lesson 3 Data Visualizations
1 lectures
Lesson 4 Loading another dataset
1 lectures
Lesson 5 Reading Some columns and rows
1 lectures
Lesson 6 Countries Data Visualizations
1 lectures
Lesson 7 Manual assigning values visualizations
1 lectures
Lesson 8 Using Subplot
1 lectures
Lesson 9 Working with missing values
1 lectures
Lesson 10 Methods for handling missing values
1 lectures
Lesson 11 Interpolation, Forward Filling and Backward Filling
1 lectures
Lesson 12 Working with duplicates
1 lectures
Assignments V: Data Visualizations Techniques, Advanced Data Manipulation, and Statistical Analysis and Interpretation
1 lectures
Workshop 6: Introduction to Machine Learning
Lesson 1 Introduction to Machine Learning
1 lectures
Lesson 2 Real word project overview and Importing libraries
1 lectures
Lesson 3 Loading Real World Dataset
1 lectures
Lesson 4 Data Preprocessing
1 lectures
Lesson 5 Data Visualizations
1 lectures
Lesson 6 Data Splitting
1 lectures
Lesson 7 Machine Learning Algorithm
1 lectures
Lesson 8 Future Prediction
1 lectures
Project: Linear Regression
1 lectures
Workshop 7: Applying Real World Project
Lesson 1 Importing necessary libraries and loading dataset
1 lectures
Lesson 2 Data Preprocessing
1 lectures
Lesson 3 Visualizations
1 lectures
Lesson 4 Splitting the Dataset
1 lectures
Lesson 5 Model Selection and Training
1 lectures
Final Course Project
1 lectures
Instructors
Abdikadir Hussein Elmi
62 Learners